
Cenário Mundial:

Cenário Mundial:

Cenário Nacional:

(Fonte: MPA - Boletim Estatístico da Pesca e Aquicultura - 2010)

Posso criar peixe em caixa d'água???

◆ Caixa de agua p/ Criação [×

erta.uol.com.br/comprar/caixa-de-agua-p-criacao-de-peixes-piscicultura-AKXJMYNNJW#rmcl

Minha conta

Perguntas frequentes

QUERO VENDER

Sua compra protegida

Voltar para: Início » Pet Shop » Artigos Diversos para Peixes » Caixa de agua p/ Criação De Peixes Piscicultura

Caixa de agua p/ Criação De Peixes Piscicultura

25.382 visitas | 2 unidades vendidas | código no anúncio: AKXJMYNNJW

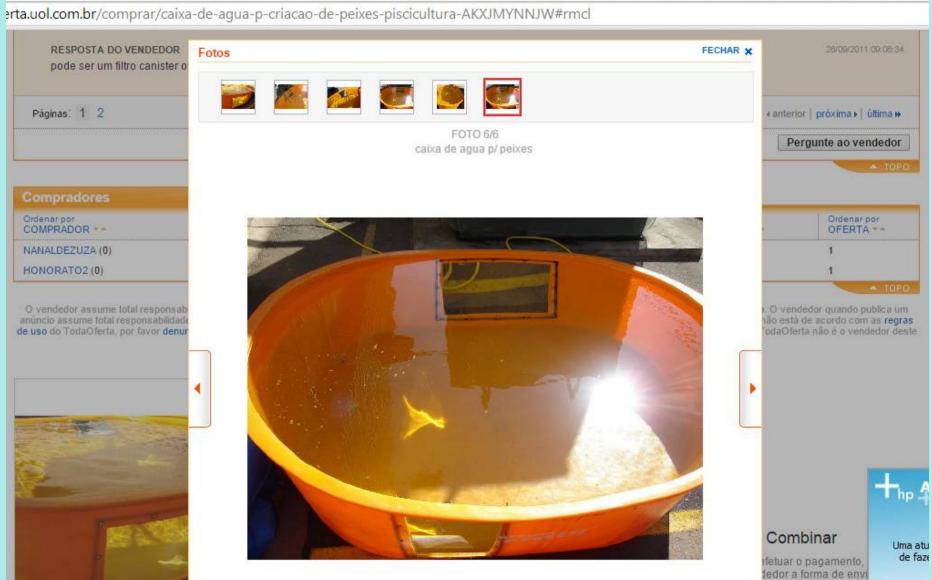
12x de R\$ **75**,30 ou R\$ 750,00 à vista

EU QUERO!

Frete A Combinar

(Antes de efetuar o pagamento, combine com o vendedor a forma de envio e o valor do frete. Para isso você pode fazer perguntas ou usar o chat online.)

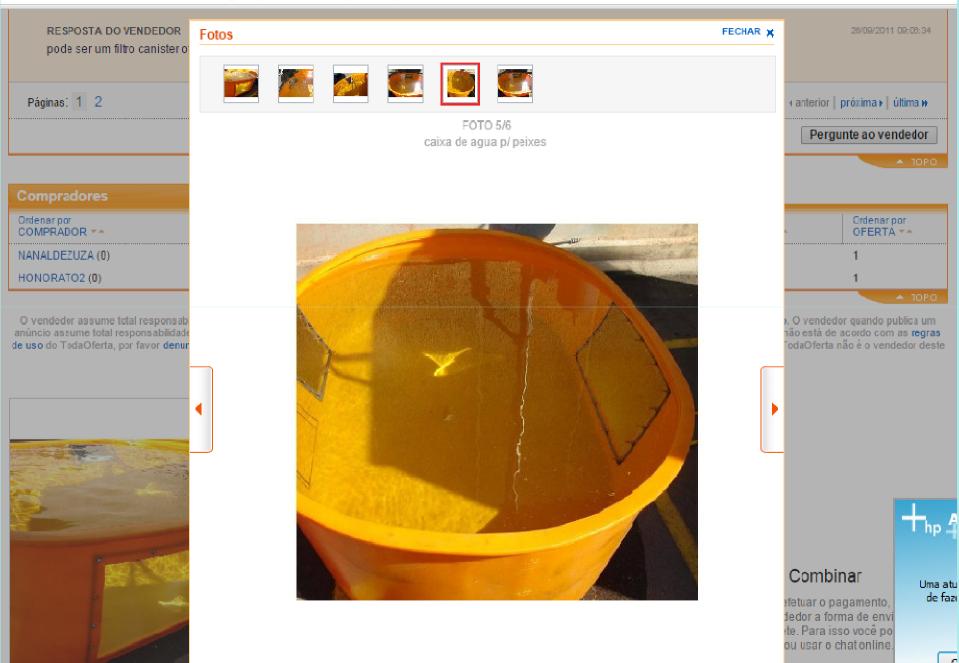
COMPARTILHE f E



GERSON199 (43)

Qualificações dos compradores

Uma



te. Para isso você po ou usar o chat online

C

◆ Caixa de agua p/ Criação | ×

erta.uol.com.br/comprar/caixa-de-agua-p-criacao-de-peixes-piscicultura-AKXJMYNNJW#rmcl

 ← Caixa de agua p/ Criação | X

erta.uol.com.br/comprar/caixa-de-agua-p-criacao-de-peixes-piscicultura-AKXJMYNNJW#rmcl

Perguntas

Pergunte ao vendedor

SOCRAMORIEDEM (0) 14/11/2012 23:52:08

na condição de fabricantes de caixas dágua para finalidades de criação de peixes , certamente vos tamberm possue projetos sugestivos com viabilidades econômica para a tal atividade que estampa em seu produto, baseado nesta sugestão eu espero que possa me informar a respeito do leque de opção de planta a serem implantadas, espero seu comunicado a respeito para futuro negocio.

RESPOSTA DO VENDEDOR

15/11/2012 13:47:37

Não tenho essas informações

BOCAO1984 (0) 15/10/2012 09:42:34

eu gostaria de saber quantos litros de aqua tem uma caixa para criacao de 1000 tilapias, o preco, e o preco da bomba nescessaria para oxigenação da caixa.

RESPOSTA DO VENDEDOR 17/10/2012 13:34:50

Só tenho caixas de 1000 litros

DAND_PINHEIRO Denunciar 12/09/2012:20:46:43

Olá meu jovem, qual o valor da caixa de 1.000 litros apenas com uma parte do acrilica de 500mm X 600mm e frete para o cep: 45550-000, atenciosamente.

RESPOSTA DO VENDEDOR 13/09/2012 10:44:33

R\$ 3500,00 frete jad log R\$ 1659,00

WELLINGTON_SILVA_MOT Denunciar 03/04/2012/20:40:34

Gostaria de saber o valor do frete desta piscina que citou para 1000 tilápias? Seria para o DF. Ela é igual aos tanques ? POssui os filtros?

RESPOSTA DO VENDEDOR 04/04/2012 09:48:51

Bom dia , não é piscina e uma caixa para criação de peixes não tem filtros ou bombas

TIPOS DE SÓLIDOS E SUAS IMPLICAÇÕES

Decomposição dos resíduos sólidos, produtos não consumidos ou não digeridos provenientes dos peixes.

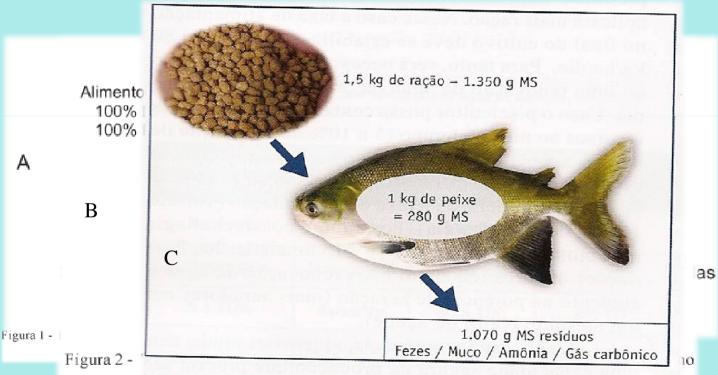


Figura 1 — Ilustração do balanço de matéria seca e da geração de resíduos (fezes, amônia, muco e gás carbônico). No exemplo, 1.350 g de MS na forma de ração são aplicados e apenas 280 g são retidos nos peixes. A diferença foi parar no ambiente de cultivo, como produtos da excreção dos peixes

Kubitza (2014)

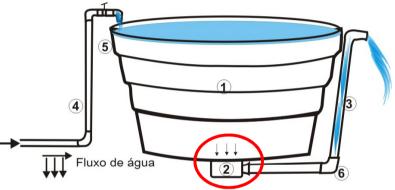
Características importantes:

"Race-way":

Forma gradiente negativo de oxigênio e positivo de amônia.

Tanques circulares: massa de água mais homogênea.

Lona plástica ⇒ fundo plano.


Alvenaria e fibra de vidro ⇒ fundo auto limpante.

Entrada de água: periférica.

Saída de água: central e de fundo.

Cuidados:

CAIXA D'ÁGUA CIRCULAR, EM FIBRA DE VIDRO, COM FUNDO AUTOLIMPANTE E SISTEMA DE ABASTECIMENTO E ESVAZIAMENTO

- 1- Caixa d'água de fibra de vidro (2.000 Litros)
- 2 Caixa Coletora adaptada no fundo (Fibra de Vidro)
- 3 Sistema de saída de água (esvaziamento) PVC 100 mm
- 4 Sistema de abastecimento com registro (PVC 2 polegadas)
- 5 Nível de água (regulada pela inclinação do tubo de saída)
- 6 Conexões (joelhos e luvas) removíveis

Detalhes construtivos da caixa adaptada

Não enterre

Não use base gradeada e cruzetas

Materiais empregados: Custos e Manejo

Tanque de ferro-solo-cal-cimento

Materiais empregados: Custos e Manejo

Tanque em fibra de vidro

Sistema de adução:

Figura 8 - Sistema de adução das caixas de produção

NOTA: A - Tubo de entrada de água nas caixas de produção, com registro; B - Orificio para aspiração do ar; C - Saída da água ao fundo da caixa; D - Borbulhamento do ar aspirado, promovendo a oxigenação da água residente.

Sistema de drenagem:

Figura 9 - Sistema de esvaziamento das caixas de produção

NOTA: É necessário um orificio (3 a 5 mm) na parte superior do tubo para evitar sifonamento da água das caixas. Para a descarga dos residuos sólidos, o registro deve ser aberto totalmente por 15 a 20 segundos.

Figura 10 - Tubo coletor da água efluente das caixas de produção (150 mm)

Índices de referência para monitoramento do desempenho zootécnico dos lotes de peixes cultivados:

- Peso médio final após 210 dias de cultivo e depuração 900 a 1.050g.;
- Consumo total de ração por peixe 1.300 a 1.700g.;
- Conversão alimentar acumulada 1,4 a 1,6;
- Rendimento industrial (% de filés) 32 a 34%;
- Taxa de sobrevivência durante todo o ciclo > que 90%.

Produção escalonada (módulo básico – 7 cx 4,5 m³): 300 kg/mês

Época Instalação	Mês 1	Mês 2	Mês 3	Mês 4	Mês 5	Mês 6	Mês 7 (estabilização)
UR1 (Berçário 1)	500 alevinos (1 a 9g)	450 juvenis (9 a 60g)	500 alevinos (1 a 9g)	450 juvenis (9 a 60g)	500 alevinos (1 a 9g)	450 juvenis (9 a 60g)	500 alevinos (1 a 9g)
UR2 (Berçário 2)		500	450	500	450	500	450
UP 1			350* juvenis (60 a 143g)	345 adultos (143 a 278g)	340 adultos (278 a 500g)	335 adultos (500 a 718g)	330 adultos (718 a 961g) Biomassa = 300 kg
UP 2				350	345	340	335 (718g)
UP 3					350	345	340 (500g)
UP 4						350	345 (278g)
UP 5							350 (143g)

Vantagens do sistema:

- Alta produtividade;
- Baixo custo de implantação;
- Segurança contra roubos;
- Manejo facilitado dos peixes (biometria, despesca...);
- Redução no desperdício de ração por perdas;
- Possibilidade de "controles" da água e ambiente:
 - armazenagem de água;
 - aquecimento da água (energia solar);
 - regular luminosidade e vento (estufa);
 - condicionamento físico-químico da água;
 - controle do fluxo de água.

Desvantagens do sistema:

- > Alto risco de colapso na qualidade da água (quando há bombeamento);
- Exige acompanhamento constante;
- Consumo de energia, em caso de bombeamento (R\$ 0,20/kg de peixe);
- Ainda depende de resultados de pesquisa para definir fatores de produção: fluxo x densidade; nível de oxigenação da água; aproveitamento dos nutrientes excretados (macrófitas aquáticas, microalgas, fertiirrigação), etc.

Layout e estruturas anexas - Sentido do fluxo da água 1 - Canal de adução 7 - Caixas de produção (2.000 L) 2 - Tubo de derivação (150 mm) 8 - Tubos de esvaziamento (100 mm) 3 - Tanque de distribuição 9 - Tubo coletor de água efluente (150 mm) 4 - Tubo de saída de tanque (150 mm) 10 - Bacia de decantação 5 - Tubo de distribuição (100 mm) 11 - Bacia de tratamento 0 - Tubos de adução das caixas (50 mm) 12 - Tubo de saída final (150 mm) Figura 1 - Esquema geral de uma unidade produtiva de piscicultura em fluxo contínuo de água

Setor de Piscicultura EPAMIG - FEAR

Simples e funcional

ESTIMATIVA SIMPLIFICADA PARA INVESTIMENTO E CUSTEIO DE 1 Módulo Básico (7 UP) — 300 kg/mês

ITEM	UNID.	CUSTO UNITÁRIO (R\$)	QTDE	CUSTO TOTAL (R\$)	
Investimento (material permane	nte)				
Regularização ambiental*	Taxas	200,00		200,00	
Sistema de abastecimento**	Conj.	300,00	1	300,00	
Caixa de derivação	Ún.	200,00	1	200,00	
Caixas d'água adaptadas (4m3)	Un.	1.500,00	7	10.050,00	
Tubos e conexões PVC	Conj.	80,00	7	560,00	
Bacias de sedimentação*	m²	200,00	4	800,00	
Estrutura de proteção	Un.	1.000,00	1	1.000,00	
Subtotal 1				13.110,00	
Custeio anual (material de cons	umo)				
Alevinos	mil	130,00	6	2.000,00	
Rações	Kg	2,00	5.400	10.800,00	
Material de consumo (baldes,					
puçás, etc.)	Conj.	500,00	1	500,00	
Subtotal 2	·			13.300,00	
Total				26.410,00	

^{*} Outorga d'água; Registro de aquicultor; CAR; Uso insignificante ou Não passível de AAF e LA

Produção anual estimada em 3,6 ton. (PV)

Mão de obra familiar (não considerada nos custos diretos)

^{**}Dependente da distância do módulo em relação à fonte d'água (por gravidade)

INDICADORES ECONÔMICOS → Venda à Varejo Módulo Básico (7 UP) — 300 kg/mês

• Renda bruta média anual ⇒ Produção total anual X Preço médio de venda 3.600 kg X R\$ 13,00

$$RB = R$46.800,00$$
 aa

- Custo de produção (CP)* (R\$/kg) ⇒ R\$ 3,50 a R\$4,50 + custos comercialização
- Renda líquida média anual ⇒ RBM CP R\$ 46.800 – (3.600 * R\$ 5,00)

$$RL = R$ 32.400,00 aa$$

- Remuneração mensal ⇒ R\$ 2.400,00 (3,3 salários mínimos)
- Pay-back (tempo de retorno do capital) = < 18 meses (tempo 0)
- ✓ PRONAF financia montantes de até R\$120.000,00 à taxa de juros reduzidos
- ✓ Ganhos indiretos ⇒ economia com adubo comercial

^{*} CP variando conforme preços de insumos na região, necessidade de bombeamento d'água, tipo de embalagem, logística / distância percorrida, estratégia de comercialização e demais dispêndios.

INDICADORES ECONÔMICOS → Intermediário Módulo Básico (7 UP) – 300 kg/mês

• Renda bruta média anual ⇒ Produção total anual X Preço médio de venda 3.600 kg X R\$ 10,00

$$RB = R$36.000,00$$
 aa

- Custo de produção (CP)* (R\$/kg) ⇒ **R\$ 3,50** a **R\$4,50**
- Renda líquida média anual ⇒ RBM CP R\$ 36.000 – (3.600 * R\$ 4,00)

$$RL = R$ 21.600,00 aa$$

- Remuneração mensal ⇒ R\$ 1.800,00 (2,5 salários mínimos)
- Pay-back (tempo de retorno do capital) = < 24 meses (tempo 0)
- ✓PRONAF financia montantes de até R\$120.000,00 à taxa de juros reduzidos.
- ✓ Ganhos indiretos ⇒ economia com adubo comercial

^{*} CP variando conforme preços de insumos na região, necessidade de bombeamento d'água, tipo de embalagem, logística / distância percorrida, estratégia de comercialização e demais dispêndios.

INDICADORES ECONÔMICOS → Venda p/ Pesque-pague Módulo Básico (7 UP) — 300 kg/mês

• Renda bruta média anual ⇒ Produção total anual X Preço médio de venda 3.600 kg X R\$ 7,00

$$RB = R$ 25.200,00 aa$$

- Custo de produção (CP)* (R\$/kg) ⇒ **R\$ 3,50** a **R\$4,50**
- Renda líquida média anual ⇒ RBM CP R\$ 25.200,00 – (3.600 * R\$ 4,00)

$$RL = R$ 10.800,00 aa$$

- Remuneração mensal ⇒ R\$ 900,00 (1,2 salário mínimo)
- Pay-back (tempo de retorno do capital) = < 30 meses (tempo 0)
- ✓ PRONAF financia montantes de até R\$120.000,00 à taxa de juros reduzidos
- ✓ Ganhos indiretos ⇒ economia com adubo comercial

^{*} CP variando conforme preços de insumos na região, necessidade de bombeamento d'água, tipo de embalagem, logística / distância percorrida, estratégia de comercialização e demais dispêndios.

INDICADORES ECONÔMICOS → Venda p/ Frigorífico Módulo Básico (7 UP) — 300 kg/mês

• Renda bruta média anual ⇒ Produção total anual X Preço médio de venda 3.600 kg X R\$ 4,80

$$RB = R$ 17.280,00 aa$$

- Custo de produção (CP)* (R\$/kg) ⇒ R\$ 3,50 a R\$ 4,50
- **Renda líquida média anual** ⇒ RBM CP R\$ 17.280,00 – (3.600 * R\$ 4,00)

$$RL = R$ 2.880,00 aa$$

- Remuneração mensal ⇒ R\$ 240,00 (1/3 salário mínimo)
- Pay-back (tempo de retorno do capital) = > 36 meses (tempo 0)
- ✓ PRONAF financia montantes de até R\$120.000,00 à taxa de juros reduzidos
- ✓ Ganhos indiretos ⇒ economia com adubo comercial

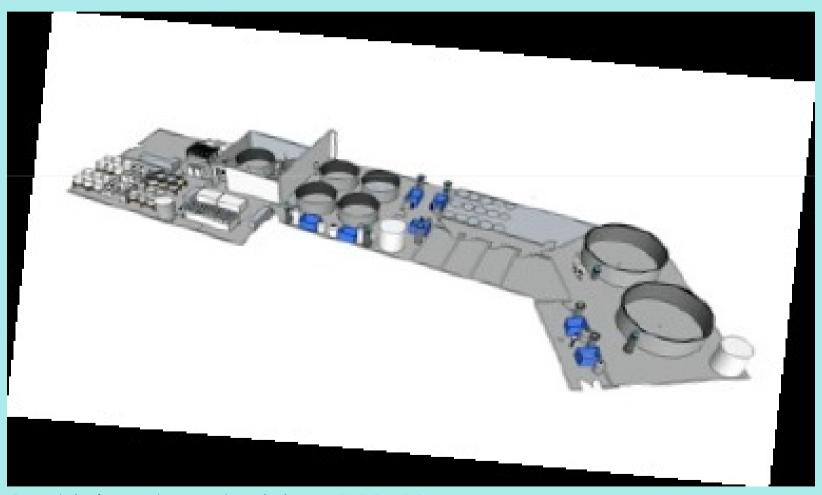
^{*} CP variando conforme preços de insumos na região, necessidade de bombeamento d'água, tipo de embalagem, logística / distância percorrida, estratégia de comercialização e demais dispêndios.

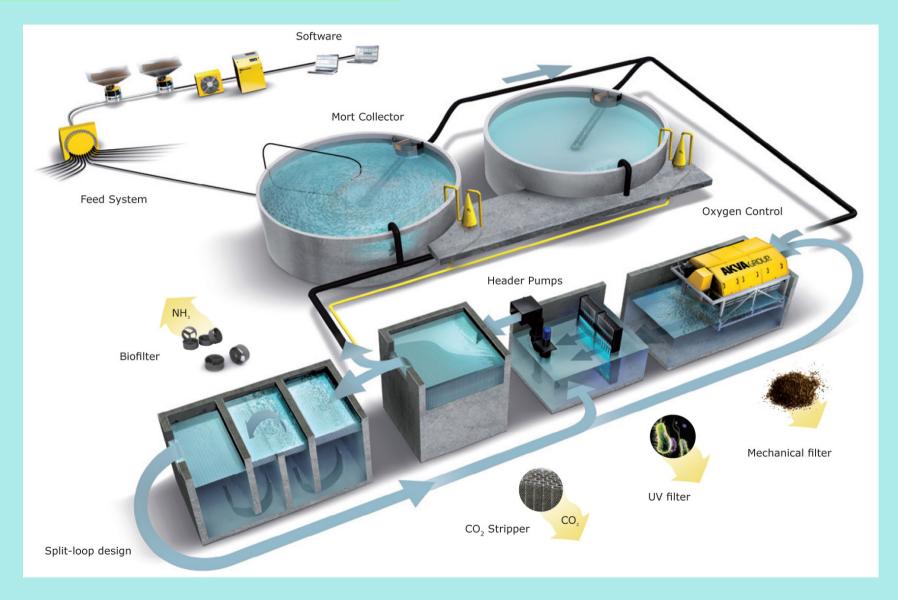
ESTIMATIVA SIMPLIFICADA PARA INVESTIMENTO E CUSTEIO DE 1 MÓDULO (17 UPs) — 1.000 kg/mês

ITEM	UNID.	CUSTO UNITÁRIO (R\$)	QTDE	CUSTO TOTAL (R\$)
Investimento (material perman	ente)			
Regularização ambiental*	<i></i>	500,00		500,00
Terraplanagem	Un.	1.000,00	1	1.000,00
Sistema de abastecimento**	Conj.	600,00	1	600,00
Caixa de derivação	Un.	400,00	1	400,00
Tubos e conexões PVC	Conj.	80,00	17	1.360,00
Caixas d'água adaptadas (4m³)	Uń.	1.500,00	17	25.500,00
Bacias de sedimentação	m²	200,00	4	800,00
Estrutura de proteção	Un.	2.000,00	1	2.000,00
Subtotal 1		·		45.370,00
Custeio anual (material de con	sumo)			
Alevinos	miĺ	130,00	15	2.000,00
Rações	Kg	2,00	18.000	36.000,00
Material de consumo (baldes,	ŭ	·		ŕ
puçás, etc.)	Conj.	500,00	1	500,00
Subtotal 2	Í			38.500,00
Total				83.870.00

^{*} Outorga d'água; Registro de aquicultor; CAR; Uso insignificante ou Não passível de AAF e LA

Mão de obra familiar (não considerada nos custos diretos)

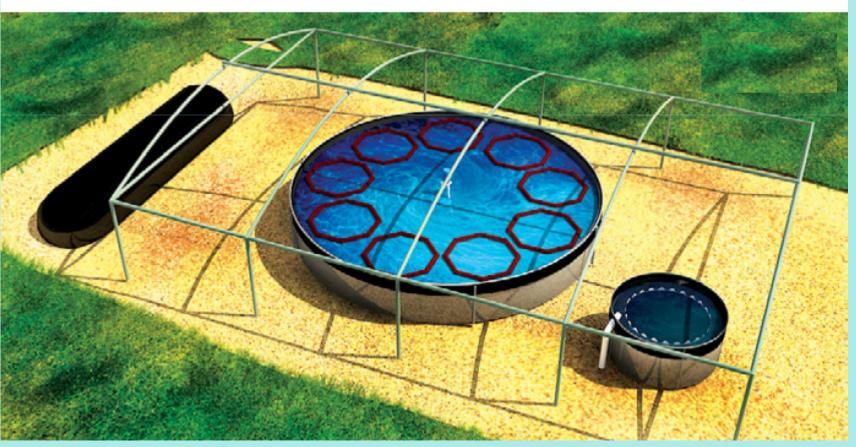

^{**}Dependente da distância do módulo em relação à fonte d'água (por gravidade) Produção anual estimada em 12,0 ton. (PV)


SISTEMAS DE RECIRCULAÇÃO:

Menor susceptibilidade à estiagens prolongadas

Croqui da área e sistemas instalados na FURG – RS

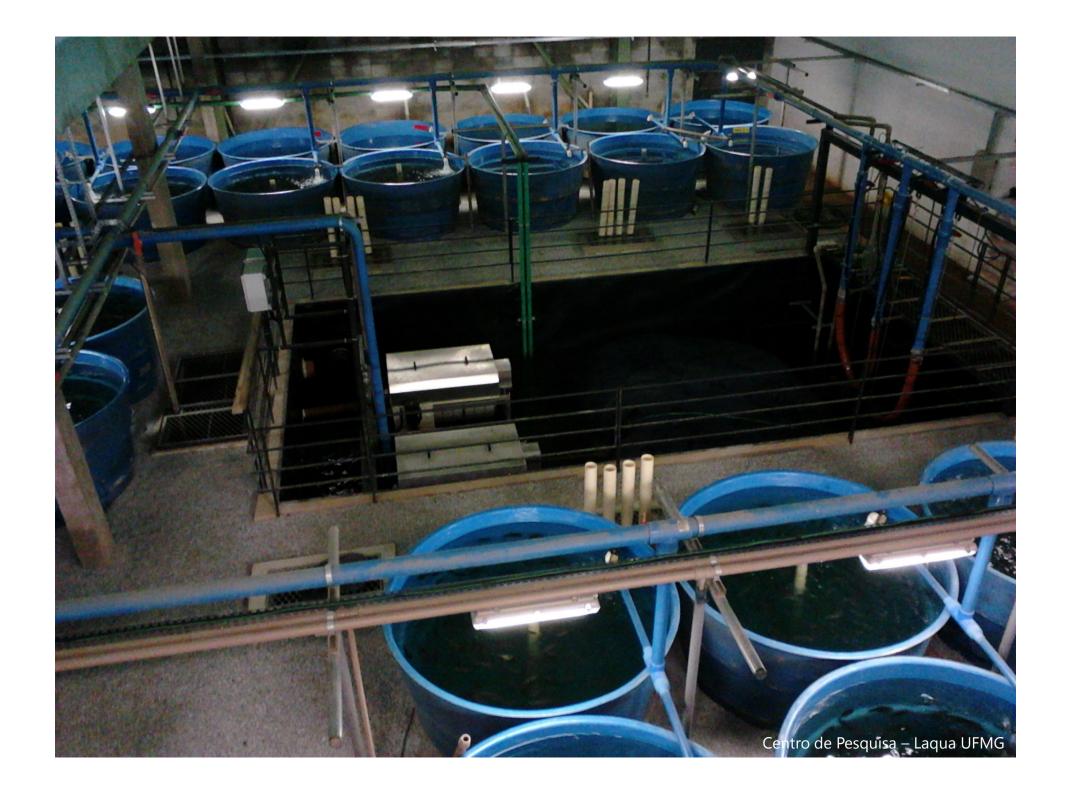
SISTEMAS DE RECIRCULAÇÃO:


Dinâmica operacional em Sistema de Recirculação

Outras estruturas:

Materiais empregados: Custos e Manejo

É um sistema que segue a linha dos cultivos chamados ZEAH (Zero Exchange, Aerobic, Heterotrophic Culture Systems).



Dinâmica de Sistema de Recirculação

Variações: Vantagens & Desvantagens

3 Rs → Racionalizar/Reutilizar/Reaproveitar

Reduzir o uso de água das fontes ou mananciais; Reutilizar a mesma água (de cultivo);

Reaproveitar a água de cultivo para outros fins;

Organoponia – www.adaptasertao.net

3 Rs → Racionalizar/Reutilizar/Reaproveitar

Piscicultura & Horta suspensa – Belo Horizonte

CHAVE: Monitoramento de qualidade de água:

Parâmetro	Periodicidade ideal	Período mais crítico do dia	Valores ideais/limites
Temperatura*	Diariamente	Final madrugada e meio da tarde	25 -
Oxigênio dissolvido*	Diariamente	Final da madrugada	5-8 mg/l
рН*	Semanalmente	Final madrugada e meio da tarde	6,5 - 8
Amônia*	Semanalmente	Final da tarde	< 0,2 mg/l
Transparência*	Semanalmente	Final da tarde	> 2,0 m (TR); Entre 25-50 cm (TE)
Dureza/alcalinidade*	Semanalmente	-	> 30mg CaCO ³ /l
Sólidos suspensos totais	Semanalmente	-	< 30mg/l
Fósforo total	Mensalmente	-	< 0,5 mg/l
Nitrogênio total	Semanalmente	-	< 5-6 mg/l
Nitrito	Semanalmente	-	<0,3 mg/l
Gás carbônico	Mensalmente	Final da tarde	< 10mg/l
Gás sulfídrico	Mensalmente	Final da madrugada	< 0,01 mg/l

Conceitos de Hidráulica:

COMO MEDIR A QUEDA D'ÁGUA

Amarrar uma das pontas de uma mangueira de plástico cheia de água em uma vara, ficando a outra extremidade livre. Segurar a extremidade livre da mangueira no ponto superior do terreno. Caminhar para o ponto inferior do terreno e ir suspendendo a vara para que a água não retorne.

Quando os níveis da água se equilibrarem dentro da mangueira, proceder à medida de altura desde o nível de água na extremidade da mangueira presa na vara, até o chão, conforme mostrado na figura ao lado.

Figure

COMO MEDIR PEQUENAS VAZÕES

Fazer toda a água cair dentro de um tambor. Medir o tempo gasto para enchê-lo (em segundos). Dividir o volume do tambor (em litros) pelo tempo gasto para enchê-lo. Teremos assim a vazão em litros por segundo. (Veja figura ao lado)

COMO MEDIR GRANDES VAZÕES

1º passo: encontrar no curso d'água um trecho o mais reto possível e sem corredeiras. Medir neste trecho 10 metros de comprimento;
 2º passo: esticar duas linhas, uma no início e outra no final dos 10 metros medidos. Medir, dentro dos 10 metros,

quatro larguras diferentes de barranco à barranco, e próximo à água. Somar as quatro larguras medidas em metro, e dividir por 4, encontrando assim a largura média em metros.

3º passo: medir dentro do trecho de 10 metros, dez profundidades em pontos diferentes. Somar as profundidades

3 passo: medir dentro do treeno de 10 metros, dez profundidades em pontos diferentes. Somar as profundidades em pontos diferentes. Somar as profundidades medidas, todas em metros e dividir por 10, encontrando assim a profundidade média, em metros.

4º passo: utilizar um flutuador que poderá ser uma garrafa com água pela metade, ou uma laranja, e medir o tempo (em segundos) gasto, para percorrer a distância entre as duas linhas esticadas (10 metros). Repetir 5 (cinco) vezes a tomada de tempo. Somar os tempos medidos em segundo e dividir por cinco, encontrando assim o tempo médio em segundo.

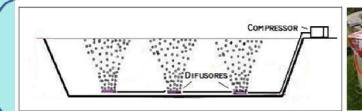
Vazão Calculada = 10 x Lm x Pm x 700 = litros/seg.

Lm = largura média (metros)
Pm = profundidade média (metros)

Tm = tempo médio (segundos)

Obs: Para utilizar esse metodo é necessário uma lâmina d'água de no mínimo 15 cm.

Dimensionamento conforme vazão de água.


stratégias de bombeamento

DIÂMETRO MÍNIMO RECOMENDADO PARA TUBULAÇÃO DE SUCÇÃO.

Vazão máxima	Diâmetro interno da tubulação		
3,5 m³/h	1"		
5,5 m³/h	1.1/4"		
8,0 m³/h	1.1/2"		
14,5 m³/h	2"		
22,5 m³/h	2.1/2"		
32,5 m³/h	3"		
58,0 m³/h	4"		
91,9 m3/h	5"		
131,0 m ⁹ /h	6"		
233,5 m³/h	8"		

Aeração:

SNatural

Compressores de ar

Sopradores

Tabela de seleção de compressores radiais

60 HZ						
Modelo	vazão Máxima	Pressão Máxima	Vácuo máximo	dB	Pot- cv	Peso (kg)
PCR2	0.8	900	800	60	1/6	7
PCR3	1,3	1400	1300	72	1/2	9,5
PCR4	1,8	1600	1400	78	3/4	14,5
PCR5	2,8	2500	2100	84	2	25,5
PCR6	3,9	2700	2100	94	4	39,5
PCR8	6,0	4000	3200	84	7,5	63,5
PCR8T	3,5	6000	4400	80	7,5	62
PCR9	7,5	4100	3600	84	7,5	80

www.aquapreamar.com.br


MANGUEIRA MICROPOROSA

MANGUEIRA MICROPERFURADA A LASER

DISCO DIFUSOR DE MEMBRANA CIRCULAR

Difusores

Aeração:

Sistemas de Aeração

Aerador Difusores Prato

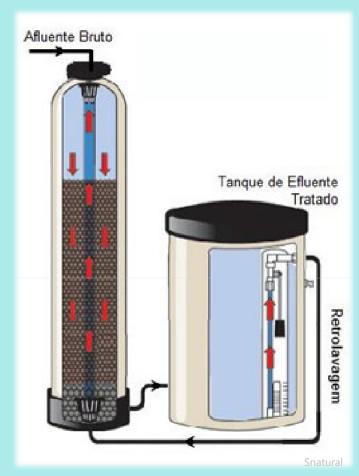
Difusor Tipo Tubular

Difusores Auto-Afundantes

Compressores

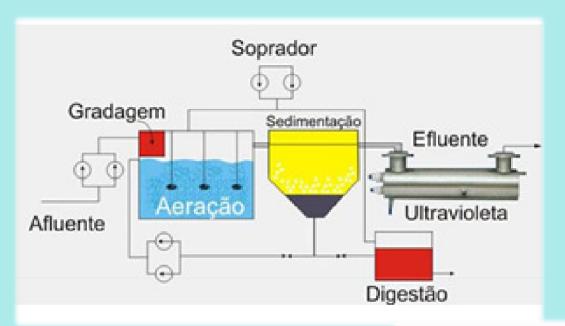
Soprador Radial

Compressor de Membrana

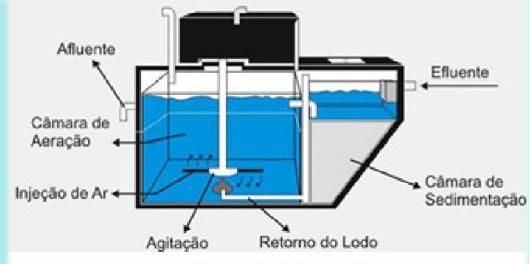


Compressor Múltiplo Estágio

Conceitos de Microbiologia:



Filtro aeróbio denitrificador



Filtro tipo tricking" descendente

Etapas e Mecanismos:

Estratégias para condicionamento da água de reuso

JUSTIFICATIVAS PARA O USO DE SISTEMAS INTENSIVOS DE PRODUÇÃO DE PEIXES

- √ valor venal da terra
- ✓ especulação imobiliária
 → Distância dos centros consumidores
- ✓ bem imóvel X bem móvel (cap. imobilizado X liquidez)
- √ cobrança pelo uso da água
- √ área de preservação permanente -APPs
- √ tratamento de efluentes
- √ off-flavor
- ✓ > produtividade; > otimização; < mão-de-obra</p>
- ✓ > possibilidade de automatização

VANTAGENS COMPARATIVAS DO SISTEMAS COMPACTOS

- √ uso racional da água;
- ✓ menor investimento relativo inicial em estrutura de produção;
- ✓ menor ônus dos custos fixos sobre o custo total;
- √ maior liquidez;
- ✓ menor tempo de retorno do capital investido;
- ✓ modulação mais simples e otimizada;
- √ integração com outras atividades agropastoris;
- ✓ adequação e atendimento à demandas específicas por meio de montagem de sistemas personalizados;
- ✓ substituição de insumos caros (adubos químicos...)

TENDÊNCIAS E OPORTUNIDADES PARA O SISTEMA DE CULTIVO EM TANQUES ESCAVADOS

- ✓ suporte à larvicultura
- ✓ produção de juvenis (recria)
- √ policultivos e ou consórcios
- ✓ produção de espécies nativas
- √ pesca e hotelaria
- √ pesque-pagues; pesque-solte

Quadro 01. Estrutura física para produção de 1.000 kg/ano de biomassa, em três sistemas de produção:

	VIVEIRO ESCAVADO	TANQUE-REDE	SFC
Produtividade	8.000 kg/ha.ano	280 kg/ m ² .ano	360 kg/m³.ano
Estrutura necessária (1.000 kg/ano)	1.250 m ²	3,6 m ²	2,8 m ³
Custo da estrutura física (R\$)	$3.750,00^{1}$	900,00 <mark>2</mark>	715,00 ³
Vida útil (anos)	20	8	5
Tanques de decantação (R\$)	750,00		Já incluído
Cerca, tela anti-pássaro ⁴	X		
Barco, motor, balsa, aerador ⁵		X	
Galpão, estufa, Sist. aquecimento, ⁶			X
Depósito, escritório e acessórios	X	X	X
TOTAL (R\$)	4.500,00	900,00	715,00

¹ Considera-se valor da terra a 5.000/ha e custo para construção de 25.000/ha

² Considera-se o conjunto: tanque-rede, material de fixação, berçário, comedouro e sombrite

³ Considera-se o conjunto: caixa circular de fibra, sistema hidráulico e bacia de tratamento

⁴ Estrutura fixa complementar para sistema de viveiro escavado

⁵ Estrutura fixa complementar para sistema de tanque-rede

⁶ Estrutura fixa complementar para sistema de fluxo contínuo

Quadro 02. Estratégias para a redução do custo final na produção de peixes.

	AÇÕES							
ITEMS DE QUETO	Monetárias (\$)				Não-Monetárias			
ITENS DE CUSTO	Compra	Fabricação	Manutenção	Bonificação	Qualidade	Manejo	Treinamento	
	conjunta	própria						
Ração	X				Χ	Х		
Instalações físicas	X	Х	Х		Х	Х		
Alevinos	Х				Х	Х		
Insumos e equipamentos	Х	Х	Х		Х	Х		
Mão-de-obra				Х			Χ	
Depreciação			Х			Х		
Assessoria técnica Atualização constante	Economize, investindo (diagnósticos prévios). Conhecimento e contatos proporciona resultados positivos (inovações).							
Segurança (anti-furtos) Água	Evite predadores, de toda natureza (grau de risco). É uma commoditie (passível de precificação).							

AGREGAÇÃO DE VALOR E COOPRODUTOS

Produtos	Aplicações	Preço/Kg	Peso real*	Valor agregado
		(R\$)	(g)	(R\$)
Filé	Pratos diversos	18,00	330	5,94
Pele	Vestuário, Gelatina, Artigos	2,50	100	0,25
Escamas	Indústria cosmética		10	0
Cabeça	Bolinhos de peixe, Almôndegas, Pirão	1,50	140	0,21
Vísceras	Silagem ácida, Farinha, Adubo, Sabão, Biodiesel	1,50	100	0,15
Carcaça s/ polpa	Silagem, Farinha multiuso (Ca e P), Adubo	1,50	140	0,21
Polpa + aparas	Empanados, CMS, Surimi, Steaks, Nugets	7,00	150	1,05
Barriguinha	Aperitivo, Óleo, Sabão, Biodiesel	8,00	30	0,24
Paleta	Aperitivo, Porção de tira- gosto	8,00	35	0,28
TOTAL			1000	8,33

^{*}Considera-se os rendimentos aproximados para tilápia com peso médio de 1 Kg. **Preços no atacado.

AGREGAÇÃO DE VALOR & GERAÇÃO DE CO-PRODUTOS

"Simulação para 1.000 kg"

		Peso	Valor
Produtos	Preço/Kg	real*	agregado
	(R\$)	(Kg)	(R\$)
Filé	18,00	330	5.940,00
Filé com costela	10,00	480	4.800,00
Peixe eviscerado com escama	7,00	890	6.230,00
Peixe inteiro fresco para			
frigorífico	4,00	1000	4.000,00
Bolinhos de peixe	14,00	350	4.900,00
Steak	13,00	150	1.950,00
Barriguinha	8,00	30	240,00
Paleta	8,00	35	280,00

^{*}Considera-se os rendimentos aproximados para tilápia com peso médio de 1 Kg.

^{**} Preços praticados no atacado (frigorífico).

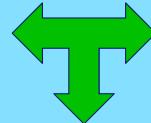
Tabela 3: Estratégias de comercialização de tilápia e suas implicações econômicas e operacionais, considerando mão-de-obra artesanal

CANAL OU ESTRATÉGIA DE COMERCIALIZAÇÃO	PREÇO DE VENDA (R\$)	MARGEM LÍQUIDA (R\$) *	INCREMENTO **	IMPLICAÇÕES ***
Peixe inteiro fresco (100% RC)	4,00	1,40	-	
Peixe eviscerado com escama (89% RC)	6,00	2,56	83%	mão-de-obra; destinação de resíduos; infra- estrutura de processamento; taxas e impostos, embalagem
Peixe eviscerado sem escama (86% RC)	7,00	2,30	64%	Idem >
Peixe eviscerado sem cabeça e nadadeiras (porquinho) 56% RC	9,00	2,10	50%	Idem >>
Filé com costela (50% RC)	10,00	1,90	36%	Idem >>>
Filé (33% RC)	18,00	2,87	105%	Idem >>>> custos operacionais

^{*}Considerando-se um custo de produção de R\$ 2,60/Kg de tilápia.

^{**}A partir da segunda estratégia, faz-se um comparativo de incremento de ganho, em percentual, com a primeira estratégia de comercialização.

^{***} Aumento gradativo dos itens, em número e intensidade, à medida que se "corta" o peixe.



OBRIGADO!

Giovanni Resende de Oliveira

Pesquisador EPAMIG Aquicultura

Empresa de Pesquisa Agropecuária de Minas Gerais Fazenda Experimental Santa Rita - FESR Rodovia MG 424 km 64,CEP: 35701-970 Zona Rural,

Tel: (31) 4113-1880; Cel:(31) 9712-1655

email: giovanni@epamig.br